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Abstract

The Shapley value equals a player’s contribution to the potential of a game. The potential
is a most natural one-number summary of a game, which can be computed as the expected
accumulated worth of a random partition of the players. This computation integrates the
coalition formation of all players and readily extends to games with externalities. We in-
vestigate those potential functions for games with externalities that can be computed this
way. It turns out that the potential that corresponds to the MPW solution introduced by
Macho-Stadler et al. (2007, J. Econ. Theory 135, 339-356), is unique in the following sense.
It is obtained as a the expected accumulated worth of a random partition, it generalizes the
potential for games without externalities, and it induces a solution that satisfies the null
player property even in the presence of externalities.
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URL: www.casajus.de (André Casajus), yfunaki.blogspot.com (Yukihiko Funaki),

www.frankhuettner.de (Frank Huettner)

Preprint submitted to arXiv February 2, 2024

http://arxiv.org/abs/2402.00394v1


1. Introduction

A significant part of the knowledge regarding the Shapley value is based on understand-
ing how it behaves in relation to subgames. The reference to subgames might appear rather
subtle as in the carrier axiom by Shapley (1953), or clearly emphasized as in other major
characterizations, e.g., by Sobolev (1975), Myerson (1980), and Hart and Mas-Colell (1989).
The latter concretize the idea that a player’s payoff can be obtained as a contribution to
the game, i.e., to a one-number summary of a game. They call this one-number summary
a potential and obtain uniqueness of both the potential as well as the Shapley value be-
ing a player’s contribution to the potential. Hart and Mas-Colell (1989) further emphasize
the importance of the fact that the potential can be computed in an intuitive way as the
expected normalized worth in a game. Whereas this computation considers coalitions in iso-
lation, Casajus (2014) demonstrates that the potential can alternatively be computed as the
expected accumulated worth of a random partition of all players. This perspective, which
evaluates a coalition’s worth in the context of the coalition formation of the other players, is
particularly striking if we want to extend these ideas to a setup that includes externalities.

Cooperative games with ex ternalities (henceforth TUX games, also known as games
in partition function form) emerge as more general approach to cooperative games with
transferable utility (henceforth TU games). The presence of externalities means that the
worth generated by a coalition depends on the coalitions formed by the other players
(Thrall and Lucas, 1963). In search for a generalization of the Shapley value (Shapley, 1953),
several solutions concepts for TUX games have been suggested. We highlight Dutta et al.
(2010), who study subgames and the potential approach for TUX games and address the
following challenge. In the presence of externalities, one cannot simply read off a subgame
from the original game as it is the case for TU games. Dutta et al. (2010) argue that there
are many ways to create subgames of a TUX game. This motivates them to introduce the
notion of restriction operators. A restriction operator specifies how subgames are derived
from TUX games. A restriction operator is path independent if it does not matter in which
order the players are removed from a TUX game. Dutta et al. (2010) show that once a path
independent restriction operator has been selected, then there exists a unique potential for
TUX games and a unique corresponding solution for TUX games that gives a player the
contribution to this potential.

In this paper, we connect these insights by asking wether there is a one-number summary
of each TUX game, such that (i) it is obtained as the expected accumulated worth of
some random partition of the players as in Casajus (2014); (ii) it is induced by a plausible
restriction operator, which connects TUX games with their subgames as in Dutta et al.
(2010); and (iii) a player’s contribution to this number provides a generalization of the
Shapley value to TUX games, which inherits the basic properties of the Shapley value
(Shapley, 1953). The answer is affirmative and yields a new foundation of the MPW solution
introduced by Macho-Stadler et al. (2007).1

1This solution is also known as stochastic Shapley value (Skibski et al., 2018) or, somewhat imprecisely,
as the average Shapley value.
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The remainder of this paper is structured as follows. In Section 2, we provide the basic
notation and revisit the relevant results. First, we focus on TU games and the Shapley value,
which is the contribution to the potential of a TU game, which in turn can be obtained as
the expected accumulated worth of a random partition. Then, we provide the basic notation
and revisit the relevant results on TUX games, in particular the approach to subgames via
restriction operators by Dutta et al. (2010).

In Section 3, we provide our results. First, we revisit the result of Casajus (2014), who
has demonstrated that the Ewens distribution with mutation rate θ = 1 (Ewens, 1972;
Karlin and McGregor, 1972) generates the potential for TU games as the expected accumu-
lated worth of a random partition of the player set. We demonstrate that there are further
such random partitions and investigate their properties.

We then obtain our first main result. Given a positive random partition that generates
the potential for TU games, we can construct a restriction operator such that the expected
accumulated worth of the random partition corresponds to the potential for TUX games.
Moreover, our construction is unique under some mild assumptions on the restriction oper-
ator.

Our second main result comes from the study of those restriction operators that we
constructed and their induced solutions for TUX games. We find that among these solutions,
only the MPW solution satisfies the null player property (or monotonicity) for TUX games.
There, we also uncover the specific restriction operator that naturally leads to the MPW
solution. This restriction operator is reminiscent of the Chinese restaurant process, which is
known to yield the Ewens distributions (Aldous, 1985, 11.19; Pitman, 2006, Equation 3.3).

We then discuss the relations between our approach and the solutions proposed in the
literature. Thereafter, we conclude with some remarks on the following points. The re-
striction operator that yields the MPW solution exhibits a surprising property, namely that
it may convert a null player into a non-null player when another player is removed. Yet,
a previously null player still obtains zero according to the MPW solution in the subgame.
Moreover, we discuss the relationship between the condition that a random partition gen-
erates the potential for TU games and the well-known conditional independence property.
Finally, we outline how our work may help to provide the basis for future research. The
appendix contains all the proofs.

2. Preliminaries

We introduce notation and results that are needed to understand our results in several
parts. First, we stay within the world of TU games. Then, we include externalities. The
appendix includes additional notation that is needed for the proofs.

2.1. The Shapley value is a player’s contribution to the expected accumulated worth of a
partition

Let U be a finite set of players, the universe of players. Throughout the paper, the
cardinalities of coalitions N, S, T, B, C ⊆ U are denoted by n, s, t, b, and c, respectively. A
partition of N ⊆ U is a collection of non-empty subsets of N such that any two of them
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are disjoint and such their union is N. The set of partitions of N is denoted by Π (N) .
Note that Π (∅) = {∅} . A random partition for U is a family of probability distributions
p = (pN)N⊆U

over partitions, i.e., pN is a probability distribution over Π (N). For π ∈
Π (N \ {i}) , adding the player i ∈ N to block B ∈ π is denoted by π+i B ∈ Π (N) ,

π+i B := (π \ {B}) ∪ {B ∪ {i}} ;

adding player i as a singleton is denoted by π+i ∅ ∈ Π (N) , i.e., π+i ∅ := π ∪ {{i}}.
A cooperative game with transferable utility, henceforth TU game (also known as a

game in characteristic function form), for a player set N ⊆ U is given by its characteristic
function v : 2N → R, v (∅) = 0, which assigns a worth to each coalition S ⊆ N . Let
V (N) denote the set of all TU games for N and let V denote the set of all TU games. For
v ∈ V (N) and i ∈ N, the subgame v−i on the player set N \ {i} is simply the restriction
of v and given by v−i (S) = v (S) for all S ⊆ N \ {i} . A one-point solution for TU games
is an operator ϕ that assigns a payoff vector ϕ (v) ∈ RN to every TU game v ∈ V (N) and
player set N ⊆ U.

The Shapley value (Shapley, 1953) probably is the most eminent one-point solution con-
cept for TU games. Besides its original axiomatic foundation by Shapley himself, alternative
foundations of different types have been suggested later on. Important direct axiomatic char-
acterizations are due to Myerson (1980) and Young (1985). The Shapley value, Sh, is given
by

Shi (v) :=
∑

S⊆N\{i}

s! (n− s− 1)!

n!
(v (S ∪ {i})− v (S)) (1)

for all N ⊆ U, v ∈ V (N) , and i ∈ N.
Hart and Mas-Colell (1989) suggest an indirect characterization of the Shapley value by

means of a potential (function) for TU games. A potential is a mapping Pot : V → R

that satisfies the following two properties. Zero-normalization: For v∅ ∈ V (∅) , we have
Pot (v∅) = 0, i.e., the unique game for the empty player set has a zero potential. Efficiency:
For all N ⊆ U, v ∈ V (N) ,we have

∑

i∈N

[Pot (v)− Pot (v−i)] = v (N) . (2)

It turns out that there exists a unique potential and that a player’s contribution to the
potential equals this player’s Shapley payoff.2

Theorem 1 (Hart and Mas-Colell, 1989). There exists a unique potential for TU games
and we have

Shi (v) = Pot (v)− Pot (v−i) for all N ⊆ U, v ∈ V (N) , and i ∈ N. (3)

2Calvo and Santos (1997) and Ortmann (1998) generalize the notion of a potential to non-efficient solu-
tions.
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Hart and Mas-Colell (1989) establishes that the potential can be calculated as the ex-
pected accumulated worth of a random partition.

Theorem 2 (Casajus, 2014). For all N ⊆ U, v ∈ V (N), we have

Pot (v) =
∑

π∈Π(N)

p⋆N (π)
∑

B∈π

v (B) , (4)

where the random partition p⋆ is given by

p⋆N (π) :=

∏

B∈π (b− 1)!

n!
for all π ∈ Π (N) . (5)

The random partition p⋆ is known as the Ewens distribution with mutation rate θ = 1
(Ewens, 1972; Karlin and McGregor, 1972), which plays a central role in the literature on
random partitions (Crane, 2016).3

As a consequence, we can understand the Shapley value as a player’s contribution to the
expected accumulated worth of a partition. The Shapley value, Sh, is given by

Shi (v) =
∑

π∈Π(N)

p⋆N (π)
∑

B∈π

v (B)−
∑

τ∈Π(N\{i})

p⋆N\{i} (τ)
∑

C∈τ

v−i (C) (6)

for all N ⊆ U, v ∈ V (N) , and i ∈ N. Note that the right-hand-sides of (3) and (6) refer to
games with varying player sets. In this sense, the Shapley value emerges as a player’s contri-
bution to a game and not as the weighted contribution to coalitions. Operating on varying
player sets is also useful for implementations and bargaining foundations of the value, which
often rest on the idea that some player’s productivity is bought out by other players, stepwise
reducing the player set (prominent examples include Gul (1989), Stole and Zwiebel (1996),
Macho-Stadler et al. (2007), McQuillin and Sugden (2016), Brügemann et al. (2018)).

Thinking of a game in terms of the expected accumulated worth of a partition is particu-
larly striking if we keep in mind that the value of a coalition should be understood in context
of the coalition structure of outsiders. This is important in the context of externalities, i.e.,
if the value of a coalition depends on the coalitions formed by the other players. Naturally,
we arrive at the question: Can (6) be generalized towards a setup that takes externalities
into account?

Of course, intuitive formulas for the potential as in (4) are of interest by itself. For exam-
ple, Hart and Mas-Colell (1989, Proposition 2.4) emphasize that the per-capita potential of
a game is the expected per-capita worth of a standard random coalition. First, any coalition
size is chosen with the same probability. Second, any coalition of a given size is chosen with

3The one-parametric family of Ewens distributions pθ, θ > 0 is given by pθN (π) := Γ(θ)θ|π|

Γ(θ+n)

∏

B∈π (b− 1)!

for N ⊆ U, π ∈ Π(N) , where Γ denotes the Gamma function. For all θ > 0, N ⊆ U, and i, j ∈ N, i 6= j,
we have

∑

π∈Π(N):π(i)=π(j) p
θ
N (π) = 1

1+θ . Note that a mutation rate of 1 corresponds to a probability of 1/2
of two arbitrary players belonging to the same block of a partition.
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the same probability. That is, we have

Pot (v)

n
=

∑

S⊆N :S 6=∅

1

n

s! (n− s)!

n!

v (S)

s
for all N ⊆ U, v ∈ V (N) . (7)

They conclude that this formula indicates that “... the potential provides a most natural one-
number summary of the game” (Hart and Mas-Colell, 1989, p. 592). Likewise, a potential
for games with externalities that exhibits some intuitive formula shall be appreciated.

Finally, we shall notice that the random partition p⋆ is the consequence of a stochastic
coalition formation process known as the “(uniform) Chinese restaurant process” (Aldous,
1985, 11.19; Pitman, 2006, Equation 3.3). It can be described as follows. Consider a
restaurant with n round tables, each seating up to n persons. The players arrive at the
restaurant in some order. The first player takes a seat at one of the tables. Any following
player takes seat at an empty table or joins any of the already present players with the same
probability. This motivates the use of “uniform” above. This process induces a random
partition where each table will be understood as a block of a partition. Concretely, after n
players have entered the room and taken a seat, each occupied table will be understood as
a block of π ∈ Π (N) and π has the probability p⋆N (π). Hence, the probability distributions
p⋆N and p⋆N\{i} are connected by

p⋆N (π+i ∅) =
1

n
p⋆N\{i} (π) and p⋆N (π+i B) =

b

n
p⋆N\{i} (π) . (8)

Insertion of (8) into (6) yields a formula of the Shapley value as the expected marginal
contribution to coalitions over all partitions. The Shapley value, Sh, is given by

Shi (v) =
∑

π∈Π(N\{i})

p⋆N\{i} (π)

(

1

n
(v ({i})− v ({∅})) +

∑

S∈π

s

n
(v (S ∪ {i})− v (S))

)

(9)

for all N ⊆ U, v ∈ V (N) , and i ∈ N. In words, the Shapley value is a player’s expected
marginal contribution to a table when entering the Chinese restaurant process last. This
might, for instance, be helpful for computations of the Shapley value based on Monte Carlo
sampling from random partitions.4

In this paper, however, we primarily focus on formulas that investigate a player’s con-
tribution to a game as in (6), rather than on formulas that exhibit a player’s contribution
to coalition as for instance in (9). For the latter, we refer to (Skibski et al., 2018) and
Skibski and Michalak (2019), who study games with externalities and solutions thereof in
the context of stochastic coalition formation processes.

4Standard Monte Carlo algorithms to compute the Shapley value rely on sampling from rank orders, e.g.,
Castro et al. (2009); however, exploiting particular formulas has shown to be more efficient for some games,
e.g., Michalak et al. (2013) or Lundberg et al. (2020).
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2.2. Games with externalities and subgames

A TU game with externalities, henceforth TUX game (also known as game in par-
tition function form), for a player set N ⊆ U is given by its partition function
w : E (N) → RN , where E (N) denotes the set of embedded coalitions (S, π) for N
given by

E (N) := {(S, π) | S ⊆ N and π ∈ Π (N \ S)} ,

and with w (∅, π) = 0 for all π ∈ Π (N). We denote the set of all TUX games for a player
set N by W (N) and the set of all TUX games by W.

If there are no externalities, that is, if w (S, π) = w (S, τ) for all S ⊆ N and all π, τ ∈
Π (N \ S), then the game w effectively is just a TU game. In this sense TU games are
special TUX games, V ⊆ W. An example of a game without externalities is the null game
0N ∈ W (N) , N ⊆ U, given by 0N (S, π) = 0 for all (S, π) ∈ E (N) .

A one-point solution for TUX games is an operator ϕ that assigns a payoff vector
ϕ (w) ∈ RN to every TUX game w ∈ W (N) and player set N ⊆ U. Whereas there is no
eminent solution for TUX games, the literature provides numerous generalizations of the
Shapley value, i.e., solutions for TUX games that coincide with the Shapley value on TU
games, ϕ (v) = Sh (v) for all v ∈ V (N) ⊆ W (N) , N ⊆ U. Examples include Myerson
(1977),Bolger (1989), Albizuri et al. (2005), Pham Do and Norde (2007), McQuillin (2009),
and Dutta et al. (2010); see Kóczy (2018) for a survey. We highlight the solution introduced
by (Macho-Stadler et al., 2007), which is obtained as the Shapley value of some average TU
game, i.e.,

MPW(w) := Sh (v̄⋆w) for all N ⊆ U, w ∈ W (N) , (10)

where the average TU game v̄⋆w ∈ V (N), in which each coalition S gets the expected value
of w (S, π) over all partitions π ∈ Π (N \ S) using the random partition p⋆, is given by

v̄⋆w (S) :=
∑

π∈Π(N\S)

p⋆N\S (π)w (S, π) for all S ⊆ N. (11)

Both the potential and the understanding of the Shapley value as a player’s contribution
to the expected accumulated worth of a partition rely on the notion of subgames, which result
from reducing the player set. For TU games, there is an obvious way to define subgames.
In contrast, the notion of a subgame is less obvious for TUX games, since we cannot simply
read it off the original game. When player i is removed from the TUX game w, we have
to specify the worth of each embedded coalition “w−i (S, π)” in the TUX game w−i without
player i. Other than for TU games, it is unclear how “w−i (S, π)” is obtained from w.

Dutta et al. (2010) introduce the concept of a restriction operator r that specifies for
each TUX game w ∈ W (N) , N ⊆ U, and player i ∈ N a “subgame” wr

−i ∈ W (N \ {i}),
where the worth wr

−i (S, π) in the subgame only depends on the worths of those embedded
coalitions in the original game that are obtained when player i is added to a block in π or
stays alone. That is, a restriction operator satisfies the following property.

Restriction, RES. For all N ⊆ U, w, w′ ∈ W (N), i ∈ N, and (S, π) ∈ E (N \ {i}) such
that w (S, π+i B) = w′ (S, π+i B) for all B ∈ π ∪ {∅} , we have wr

−i (S, π) = (w′)r−i (S, π) .
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Another crucial property of restriction operators is called path independence. A restric-
tion operator is path independent if the order in which the players are removed is irrelevant.

Path independence, PI. For all N ⊆ U, w ∈ W (N) , and i, j ∈ N, i 6= j, we have
(wr

−i)
r
−j = (wr

−j)
r
−i.

Note that we can refer to subgames obtained by the elimination of multiple players whenever
r is path independent. That is, the subgames wr

−T , T ⊆ N, are well-defined for path
independent restriction operators.

With the ability to remove players from a game, Dutta et al. (2010) can generalize the
notion of potential functions to TUX games. Given a path independent restriction operator
r, define the r-potential by replacing v−i in (2) with wr

−i. That is, an r-potential is a
mapping Potr : W → R that satisfies the following two properties: Zero-normalization: For
0∅ ∈ W (∅) , we have Potr

(

0∅
)

= 0, i.e., the unique game for the empty player set has a zero
potential. Efficiency: For all N ⊆ U, w ∈ W (N) , we have

∑

i∈N

[

Potr (w)− Potr
(

wr
−i

)]

= w (N, ∅) . (12)

This recursively determines a well-defined and unique potential for each path independent
restriction operator r.

Similarly to the Shapley value, which is the contribution of a player to the potential of
a TU game, each path independent restriction operator induces a unique solution for TUX
games, the r-Shapley value, which is the contribution of a player to the r-potential of
a TUX game. The connection between the r-Shapley value and the Shapley value is via
auxiliary TU games vrw ∈ V (N):

1. For a given TUX game w ∈ W (N) , N ⊆ U, we first compute the auxiliary TU game
vrw ∈ V (N), in which each coalition S generates the worth generated by the grand
coalition if we remove all the other players N \S from the game. That is, the auxiliary
TU game is defined by

vrw (S) := wr
−N\S (S, ∅) for all S ⊆ N. (13)

2. Second, we apply the Shapley value to this auxiliary TU game in order to obtain the
r-Shapley value,

Shr (w) := Sh (vrw) for all w ∈ W (N) , N ⊆ U. (14)

Dutta et al. (2010) find that the r-potential of the TUX game w is just the potential
of the auxiliary TU game vrw and that the r-Shapley value is a player’s contribution to the
r-potential of a TUX game.

Theorem 3 (Dutta et al., 2010). For every path independent restriction operator r, there
exists a unique r-potential Potr. It is given by

Potr (w) = Pot (vrw) for all N ⊆ U, w ∈ W (N) , (15)

8



where vrw is defined in (13). Moreover, we have

Shr
i (w) = Potr (w)− Potr

(

wr
−i

)

for all N ⊆ U, w ∈ W (N) , and i ∈ N. (16)

Equipped with these insights, we can now proceed to our research questions.

3. Results

In this section, we investigate if it is possible to summarize each TUX game by a single
number such that this number is obtained as the r-potential of a TUX game for some restric-
tion operator r, and such that this number is also obtained as the expected accumulated
worth of some random partition p, given by

Ep (w) :=
∑

π∈Π(N)

pN (π)
∑

S∈π

w (S, π \ {S}) for all N ⊆ U, w ∈ W (N) . (17)

Moreover, we want this one-number summary to equal the potential for TU games if there
are no externalities. Hence, we are interested in random partitions that satisfy the following
property.

Potential generating, GEN. For all TU games v ∈ V (N) ⊆ W (N) and player sets
N ⊆ U, we have Ep (v) = Pot (v), where the potential for TU games Pot (v) defined in (2).

The answer is affirmative and will be constructive, i.e., we can provide a formula for the
respective restriction operators. This leads to our final question: Do the induced r-Shapley
values preserve standard properties of the Shapley value. As it turns out, this is only the
case for the MPW solution introduced by Macho-Stadler et al. (2007).

We structure our journey as follows. To begin with, we shed some light on random
partitions that generate the potential and motivate further plausible conditions on ran-
dom partitions. Thereafter, we describe the structure of restriction operators rp, such that
Potr

p

= Ep for some random partition p that generates the potential for TU games (GEN).
Finally, we identify the MPW solution as the only resulting rp-Shapley value that satisfies
the null player property in presence of externalities.

3.1. Random partitions partition that generate the potential for TU games

For games with more than four players, the Ewens distribution p⋆ is not the only random
partition that generates the potential for TU games (GEN). More precisely, the following
proposition describes the characteristics of potential-generating random partitions.

Proposition 4. The following statements are equivalent:
(i) The random partition p generates the potential for TU games (GEN).
(ii) The random partition p satisfies

∑

π∈Π(N):T∈π

pN (π) =
(n− t)! (t− 1)!

n!
for all N ⊆ U, T ⊆ N, T 6= ∅. (18)
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(iii) The random partition p satisfies

∑

π∈Π((N\{i})\S)

pN\{i} ({S} ∪ π) =
n

n− s

∑

π∈Π((N\{i})\S)

∑

B∈π∪{∅}

pN ({S} ∪ π+i B) (19)

for all N ⊆ U, i ∈ N, and S ⊆ N \ {i} , S 6= ∅.

Whereas condition (ii) gives an explicit expression for the probability of a particular
coalition to appear in a randomly chosen partition, condition (iii) offers a recursive relation.
The latter will be useful for the construction of a restriction operator that “behaves well”
on TU games. Note that these conditions already determine the probabilities pN ({N}) and
pN ({N \ {i} , {i}}). Moreover, for games with up to three players, the random partition p
needs to coincide with the Ewens distribution p⋆.

Corollary 5. (i) For every random partition p that generates the potential for TU games
(GEN), we have pN ({N}) = 1

n
and pN ({N \ {i} , {i}}) = 1

n(n−1)
for all N ⊆ U and i ∈ N.

(ii) For all N ⊆ U such that n ≤ 3, we have pN (π) = p⋆N (π) for all π ∈ Π (N), where
p⋆ is given in (5).

In games with more than three players, we obtain additional degrees of freedom. For
instance, every random partition pc, − 1

24
≤ c ≤ 1

8
, that assigns the following probabilities

to partitions of four players, U = {i, j, k, ℓ}, generates the potential for TU games:

pc4 (π) =















p⋆4 (π) +
1
3
c, π = {{i, j} , {k, ℓ}} ,

p⋆4 (π)−
1
3
c, π = {{i, j} , {k} , {ℓ}} ,

p⋆4 (π) + c, π = {{i} , {j} , {k} , {ℓ}} ,
p⋆4 (π) , otherwise.

(20)

For details on how to extend (20) to larger games, we refer to the appendix.
Note that setting c = 1

8
and c = − 1

24
in (20) gives random partitions that assign zero

probability to partitions of types {{i, j} , {k} , {ℓ}} and {{i} , {j} , {k} , {ℓ}}, respectively. In
what follows, we might not be interested in such random partitions. Instead, we usually want
that the expected accumulated worth of a random partition makes use of all the information
of a game and we shall assume the following positivity condition on random partitions.

Positivity, POS. For all N ⊆ U and π ∈ Π (N) , we have pN (π) > 0.

To rule out further oddities, we shall restrict our focus to restriction operators that map
null games to null games. Specifically, we shall impose the following condition on restriction
operators.

Preservation of null games, PNG. For all N ⊆ U and i ∈ N, we have
(

0N
)r

−i
= 0N\{i}.

3.2. Potentials for TUX games equaling the expected accumulated worth of a partition

We are ready to develop our first main result. It describes the structure of those restric-
tion operators that induce a potential that both generalizes the potential for TU games and
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is given as the expected accumulated worth of a random partition. Suppose we are given
some positive random partition p that generates the potential for TU games. In search of a
suitable restriction operator rp, we need to preserve the natural restriction on TU games, i.e.,
vr

p

−i (S, π) = v (S, π+i B) for all v ∈ V (N) ⊆ W (N), (S, π) ∈ E (N \ {i}), and B ∈ π ∪ {∅}.
By Proposition 4 (iii), we then have

∑

τ∈Π((N\{i})\S)

pN\{i} ({S} ∪ π) vr
p

−i (S, π)

=
n

n− s

∑

τ∈Π((N\{i})\S)

∑

B∈π∪{∅}

pN ({S} ∪ π+i B) v (S, π+i B) .

This indicates that the following restriction operator works well for TU games V (N) ⊆
W (N).

Definition 6. Let p be a positive (POS) random partition that generates the potential for
TU games (GEN). We define the restriction operator rp by

wrp

−i (S, π) :=
n

n− s

∑

B∈π∪{∅}

pN ({S} ∪ π+i B)

pN\{i} ({S} ∪ π)
w (S, π+i B) (21)

for all N ⊆ U, w ∈ W (N) , i ∈ N, and (S, π) ∈ E (N \ {i}).

It remains to be clarified whether this restriction operator also has plausible properties
for games with externalities. This is the content of the following theorem, which further
emphasizes the uniqueness of this restriction operator.

Theorem 7. Let p be a positive random partition (POS) that generates the potential for
TU games (GEN). A restriction operator r is path independent (PI), preserves null games
(PNG), and satisfies Potr = Ep, i.e., its induced r-potential defined in (15) coincides with
the expected accumulated worth of the random partition p given in (17), if and only if r = rp.

Theorem 7 is useful for multiple reasons. It clarifies that whenever a given positive
random partition p generates the potential for TU games as the expected accumulated
worth of the random partition, then this can be extended to a potential for TUX games in
a unique plausible way. This is achieved by using the restriction operator rp given in (21),
which yields the auxiliary games vr

p

w as defined in (13), thereby yielding the potential Potr
p

according to (15).
Moreover, Theorem 7 is constructive in the sense that it yields a tractable formula for the

restriction operator rp. This has immediate consequences, such as a simple formula for the
induced rp-Shapley value, which by definition is a player’s contribution to the rp-potential
of a TUX game.

11



Corollary 8. (i) Let p be a positive random partition (POS) that generates the potential
for TU games (GEN) and denote the corresponding restriction operator according to (21)
by rp. The rp-Shapley value Shrp as defined by (14) is given by

Shrp

i (w) =
∑

(T,τ)∈E(N\{i})



pN ({T ∪ {i}} ∪ τ)w (T ∪ {i} , τ)

−
t

n− t

∑

B∈τ∪{∅}

pN ({T} ∪ τ+i B)w (T, τ+i B)



 (22)

for all N ⊆ U, w ∈ W (N) , and i ∈ N.
(ii) Moreover, for TU games, the rp-Shapley value Shrp coincides with the Shapley value,

i.e., Shrp (v) = Sh (v) for all N ⊆ U, v ∈ V (N) ⊆ W (N).

The corollary reconfirms that the rp-Shapley value generalizes the Shapley value for
suitable random partitions. Moreover, it provides a formula that allows us to investigate its
properties.

3.3. The only rp-Shapley value satisfying the null player player property is the MPW solution

So far we have motivated the rp-Shapley value, which emerges if we want to generalize the
potential from TU games to TUX games in a way that preserves its interpretation of being
an expected accumulated worth of a random partition. We further identified the specific
structure of such rp-Shapley values.

From (22), it becomes apparent that the rp-Shapley values are additive in the game and
anonymous. Moreover, every rp-Shapley value inherits efficiency from the Shapley value by
definitions (14) and (13). However, it is less clear whether rp-Shapley values satisfy standard
monotonicity properties or assign zero payoff to null players. Indeed, the latter is at the
heart of our second main result. We prepare it by investigating the obvious question of what
we obtain if we apply Theorem 7 to the Ewens distribution p⋆ given in (5).

Lemma 9. For p = p⋆, the restriction operator r⋆ := rp
⋆

is given by

wr⋆

−i (S, π) =
1

n− s
w (S, π+i ∅) +

∑

B∈π

b

n− s
w (S, π+i B) (23)

for all N ⊆ U, w ∈ W (N), i ∈ N, and (S, π) ∈ E (N \ {i}). Moreover, the r⋆-Shapley value
coincides with the MPW solution, Shr⋆ = MPW.

Lemma 9 highlights that p⋆ yields an interesting restriction and a very familiar general-
ization of the Shapley value. Moreover, the restriction operator lends itself to an intuitive
interpretation reminiscent of the Chinese restaurant process. The worth of an embedded
coalition after player i has left the game computes as if this player would take a seat next
to any outside player equally likely or stays alone.

12



From (10) and (23) it follows that the MPW solution assigns a zero payoff to null players.
Specifically, player i ∈ N is a null player in TUX game w ∈ W (N) with player set N ⊆ U
if player i’s position in the game does not influence the worth of any embedded coalition,
i.e., if w (S ∪ {i} , π) = w (S, π+i B) for all (S, π) ∈ E (N \ {i}) and B ∈ π ∪ {∅}.5 The
MPW solution satisfies the following property.6

Null player, NP. For all N ⊆ U, w ∈ W (N) , and i ∈ N such that player i is a null player
in w, we have ϕi (w) = 0.

Notice that the null player property imposes the standard null player property on TU
games V ⊆ W.7 Indeed, since every rp-Shapley value coincides with the Shapley value
on TU games, every rp-Shapley value also satisfies the null player property for TU games.
However, the next theorem clarifies that only one rp-Shapley value satisfies the null player
property also in the presence of externalities, the MPW solution.

Theorem 10. Let p be a random partition and denote the corresponding rp-Shapley value
defined in (22) by Shrp. The rp-Shapley value Shrp satisfies the null player property (NP)
if and only if p = p⋆, i.e., if and only if Shrp = MPW.

In summary, the MPW solution emerges as the unique solution for TUX games if we
demand the following from a solution ϕ:

1. the TUX solution ϕ is an r-Shapley value for some path independent (PI) restriction
operator r that preserves null games (PNG);

2. its corresponding r-potential coincides with the expected accumulated worth for some
positive (POS) random partition that generates the potential for TU games (GEN);
and

3. the TUX solution ϕ satisfies the null player property (NP).

4. Discussion

In this section, we discuss the relation of our approach to the literature. de Clippel and Serrano
(2008) put forth another important property for solutions for TUX games. Specifically, they
argue that a player’s payoff shall weakly increase with this player’s marginal contributions.

Monotonicity, M. For all N ⊆ U, w, z ∈ V (N) and i ∈ N, such that

w (S ∪ {i} , π)− w (S, π+i B) ≥ z (S ∪ {i} , π)− z (S, π+i B)

for all (S, π) ∈ E (N \ {i}) and B ∈ π ∪ {∅} , we have ϕi (w) ≥ ϕi (z) .

5Dutta et al. (2010) call (our) null players “dummy players of type 1”. Bolger (1989) calls them “dum-
mies”, Macho-Stadler et al. (2007) “dummy players”, and de Clippel and Serrano (2008) “null players in
the strong sense”.

6Macho-Stadler et al. (2007) call this property the “dummy player axiom”.
7A solution ϕ satisfies the null player property for TU games if for all v ∈ V (N) ⊆ W (N) , N ∈ N ,

i ∈ N such that v (S ∪ {i}) = v (S) for all S ⊆ N \ {i}, we have ϕi (v) = 0.

13



It follows from (10) and (23) that the MPW solution satisfies monotonicity. Moreover,
every rp-Shapley value gives a zero payoff to every player in the null game, Shrp

i

(

0N
)

= 0 for
all i ∈ N, N ⊆ U. Hence, an rp-Shapley value satisfies the null player property whenever
it is monotonic. We can therefore replace the null player property by monotonicity in
Theorem 10.

Corollary 11. Let p be a random partition and denote the corresponding rp-Shapley value
defined in (22) by Shrp. The rp-Shapley value by Shrp satisfies the monotonicity (M) if and
only if p = p⋆, i.e., if and only if Shrp = MPW.

Note that formula (22) for the rp-Shapley value Shrp works for arbitrary random parti-
tions for which we call it the p-Shapley value and denote it by Shp. Careful inspection of
the proofs of Theorem 10 and Corollary 11 reveals that they also hold true for arbitrary
random partitions, i.e., the p-Shapley values. The relation between the p-Shapley values
and other TUX solutions from the literature is as follows.8 The TUX solutions suggested by
Myerson (1977), Pham Do and Norde (2007), and McQuillin (2009, Definition 4) coincide
with the MPW solution for n ≤ 2 but are not p-Shapley values for n > 2. The TUX solutions
suggested by Bolger (1989) and Albizuri et al. (2005) coincide with the MPW solution for
n ≤ 3 but are not a p-Shapley values for n > 3.

5. Concluding Remarks

In this paper, we extend the stream of research on coalitional games with externalities
(TUX games) and changing player sets. We start with the observation that the Shapley
value is the contribution to the potential of a game, which can be computed as the expected
accumulated worth of a random partition of the player set. In our quest to generalize this idea
to TUX games, we need to address the challenge that there is no obvious way for creating
subgames in the presence of externalities. To this end, we use the concept of restriction
operators introduced by Dutta et al. (2010), which capture a plethora of possibilities to
obtain subgames. Each path independent restriction operator induces a potential for TUX
games. Our first main result describes those restriction operators for which the corresponding
potential can be computed as an expected accumulated worth of some random partition and
which generalize the potential for TU games. Each such restriction operator then induces
a generalization of the Shapley value for TUX games. In particular, each such solution for
TUX games gives a payoff zero to null players in the absence of externalities. However, only
the MPW solution (Macho-Stadler et al., 2007) maintains this property also in the presence
of externalities, which is our second main result. We further find that the notion of subgames
that corresponds to the MPW solution relates to the Chinese restaurant process. The worth
of an embedded coalition after a player has left computes as if this player would equally
likely take a seat next to any outside player or stays alone. This reveals another connection
to the Ewens distribution, which is obtained from the Chinese restaurant process.

8These relationships can be obtained by the straightforward but tedious calculation of the payoffs for
Dirac games. Details can obtained from the authors upon request.
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5.1. Null players after removing another player

Although the MPW solution is obtained as an intuitive generalization of the Shapley
value that can be interpreted as a player’s contribution to the expected accumulated worth
of a random partition in a game, its corresponding restriction operator, i.e., its notion of
how to obtain subgames, exhibits a surprising property. Suppose player j is a null player in
a game and some other player i is removed from the game. It may happen that player j is
no longer a null player in the subgame. Note, however, that player j’s payoff according to
the MPW solution remains zero. To see this more lucidly, consider the following example.

Example 12. There are four players, N = {1, 2, 3, 4} . The partition function w is given
by

w (S, π) =















1, if 2 ∈ S and 3 ∈ S,
1, if 2 ∈ S, 3 /∈ S, and 4 /∈ π (3) ,
1, if 3 ∈ S, 2 /∈ S, and 4 /∈ π (2) ,
0, otherwise.

for all (S, π) ∈ E (N) . (24)

In words, the position of player 1 is irrelevant. Players 2 and 3 are the productive players.
If both of them are contained in S, then a worth of 1 is created. Yet, if only one of them is
contained in S, then the worth created depends on the position of player 4. If player 4 is in
the same block as the productive player not in S, then the worth created drops to 0.

In this game, player 1 is a null player, whereas player 4’s impact originates from external
effects only. Assume that player 4 leaves the game. In the resulting subgame, the worth
wr

−4 ({1, 3} , {{2}}) is determined by

w ({1, 3} , {{2} , {4}}) = 1 and w ({1, 3} , {{2, 4}}) = 0,

and the worth wr
−4 ({3} , {{1, 2}}) is determined by

w ({3} , {{1, 2, 4}}) = 0 and w ({3} , {{1, 2} , {4}}) = 1.

Thus, player 1’s marginal contribution wr
−4 ({1, 3} , {{2}})− wr

−4 ({3} , {{1, 2}}) depend on
these numbers. A restriction operator needs to aggregate this information and process the
externalities exhibited by player 4. The restriction operator corresponding to the MPW
solution r⋆ preserves the fact that not only players 2 and 3 have an influence on creation of
worth in the original game, and make player 1 a non-null player in the subgame, resulting
in the marginal contribution

wr⋆

−4 ({1, 3} , {{2}})− wr⋆

−4 ({3} , {{1, 2}}) =
1

6
.

This relates to the idea that player 1’s position might have had an influence on how likely
player 4 “merged” with player 2. In contrast, Dutta et al. (2010) focus their analysis on
restriction operators that preserve null players as such when other players are removed.
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Although player 1 no longer is a null player in the subgame wr⋆

−4, the MPW solution
still assigns a zero payoff to this player, MPW1

(

wr⋆

−4

)

= 0. This is no coincidence. As the
next proposition states, null players continue to obtain a zero payoff according to the MPW
solution in subgames obtained from removing other players.

Proposition 13. For all N ⊆ U, w ∈ W (N) , j ∈ N, and T ⊆ N \ {j} such that j is a
null player in w, we have MPWj

(

wr⋆

−T

)

= 0.

This result rests on the fact that the average operator v̄⋆ which is definitive of the MPW so-
lution, the restriction operator r⋆, and the restriction of TU games “work together” properly,
i.e., they commute.

5.2. Potential generation and conditional independence

Next, we relate the condition on a random partition p that it generates the potential for
TU games (GEN) to another prominent condition on random partitions, which is known
as conditional independence.

Conditional independence, CI (Kingman, 1978). For all N ⊆ U, π ∈ Π (N) , and B ∈ π,
we have

pN (π) = pN\B (π \ {B})
∑

τ∈Π(N):B∈τ

pN (τ) . (25)

With some mild additional assumptions, conditional independence is characteristic of
the family of the Ewens distributions. Note that conditional independence does not imply
potential generation, nor the other way around.9 In this sense, our work complements
Skibski and Michalak (2019), who highlight how conditional independence selects the MPW
solution among those solutions for TUX games that can be motivated via a stochastic
partition formation process. However, only one random partition satisfies both conditions.

Proposition 14. The random partition p⋆ given in (5) is the unique random partition that
generates the potential (GEN) and satisfies conditional independence (CI).

5.3. Some future research paths

The research on varying player sets not only complements the research on TUX games
that operates on a fixed player set (Myerson, 1977; de Clippel and Serrano, 2008; Grabisch and Funaki,
2012; Sánchez-Pérez, 2016; Skibski et al., 2018; Yang et al., 2019; Skibski and Michalak,
2019), but has multiple motivations as it also paves the way for further research. For
instance, in the context of TU games, Myerson (1980) uses the removal of a player to cap-
ture a notion of fairness: player i shall benefit from player j’s participation in the games
as much as the other way around. Within the realm of TU games, this is as characteristic

9The Ewens distributions defined in Footnote 3 with mutation rates θ 6= 1 are known to satisfy CI, but

violate GEN, e.g., p
1/2
N ({N}) 6= 1/n—a contradiction to 5. The example in (20) with c = 1/8 satisfies

GEN, but violates CI, which can be seen from p
1/8
4 ({{i, j} , {k} , {ℓ}}) = 0 6= p⋆2 ({{k} , {ℓ}}) · 1/12, a

contradiction to (25) for B = {i, j}.
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of the Shapley value as the admittance of a potential function (see Casajus and Huettner
(2018) for a survey of equivalent properties and Kamijo and Kongo (2012) for variants that
include aspects of solidarity). Analogous fairness properties can be studied for TUX games
based on the intuitive restriction operator that we introduce.

Another stream of research involves the study of nonlinear generalizations of the Shapley
value to TUX games. Whereas Young (1985) demonstrates that monotonicity together with
efficiency and symmetry are characteristic of the Shapley value, de Clippel and Serrano
(2008) emphasize that imposing these axioms in the presence of externalities does not achieve
uniqueness, but even allows for nonlinear solutions. Dutta et al. (2010) demonstrate that
nonlinear solutions are compatible with restriction operators and their potential approach.
This invokes the question of how our formula of the potential as an expected value of a
random partition needs to be adjusted to allow for such solutions as well.

Moreover, varying player sets are required for the Nash program, which aims at connect-
ing cooperative and non-cooperative game theory. Most implementations of the Shapley
value make direct or implicit use of reduced games as for example Gul (1989), Stole and Zwiebel
(1996), Macho-Stadler et al. (2007), McQuillin and Sugden (2016), Brügemann et al. (2018).
The present paper links the restriction operator that is characteristic of the MPW solution
to the uniform Chinese restaurant process, indicating a building block for possible imple-
mentations of the MPW solution.
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Appendix A. Additional notation

We denote the block of π ∈ Π (N) that contains player i ∈ N by π (i). The atomistic
partition is denoted by [N ] ∈ Π (N) and given by [N ] := {{i} | i ∈ N} . For π ∈ Π (N) ,
N ⊆ U, the elimination of the players in T ⊆ N from π gives π−T ∈ Π (N \ T ) ,

π−T := {B \ T | B ∈ π and B \ T 6= ∅} .

Instead of π−{i}, we write π−i.
For α ∈ R and w,w′ ∈ W (N) , N ⊆ U, the games αw ∈ W (N) and w+w′ ∈ W (N) are

given by (αw) (S, π) = α (w (S, π)) and (w + w′) (S, π) = w (S, π) + w′ (S, π) for all (S, π) ∈
E (N) . For N ⊆ U and (T, τ) ∈ E (N) , T 6= ∅, the Dirac (TUX) game δT,τ ∈ W (N) is
given by

δT,τ (S, π) :=

{

1, if (S, π) = (T, τ) ,
0, else

for all (S, π) ∈ E (N) . (A.1)

17



Every TUX game w ∈ W (N), N ⊆ U has a unique linear representation in terms of Dirac
games,

w =
∑

(T,τ)∈E(N):T 6=∅

w (T, τ) δT,τ . (A.2)

That is, the set {δT,τ | (T, τ) ∈ E (N) : T 6= ∅} is as basis of the vector space W (N).
For N ⊆ U and T ⊆ N, T 6= ∅, the Dirac TU game δNT ∈ V (N) is given by δNT (S) = 1

for T = S and δNT (S) = 0 otherwise (we carry the superscript indicating the player set for
such TU games). For N ⊆ U and T ⊆ N, T 6= ∅, the unanimity TU game uN

T ∈ V (N)
is given by uN

T (S) = 1 for T ⊆ S and uN
T (S) = 0 otherwise.

Appendix B. Proofs

We now present the proofs of our results.

Appendix B.1. Proof of Proposition 2

Both, the mappings Pot and Ep are linear. Hence, it suffices to show the claim for Dirac
TU games.

(i) ⇒ (ii) From (7), we obtain the potential for the Dirac TU games, δNT , T ⊆ N,
T 6= ∅, N ⊆ U,

Pot
(

δNT
)

=
(n− t)! (t− 1)!

n!
. (B.1)

By GEN, we further have Pot
(

δNT
)

= Ep

(

δNT
)

. From the definition of Ep, we get

Ep

(

δNT
)

=
∑

π∈Π(N):π∋T

pN (π) .

This confirms the claim.
(ii) ⇒ (iii) The RHS of (19) can be written as n

n−s

∑

π∈Π(N\S) pN ({S} ∪ π). The claim

now follows from (ii).
(iii)⇒ (i) We proceed by induction on n. Induction basis: For n = 1,

∑

π∈Π(N) pN (π) = 1

implies the claim. Induction hypothesis (IH): For all N ⊆ U, v ∈ V (N) such that n < m,
we have Ep (v) = Pot (v). Induction step: Now let N ⊆ U be such that n = m. For T ( N ,
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i ∈ N \ T we have

Ep

(

δNT
) (17)
=

∑

π∈Π(N\T )

pN ({T} ∪ π)

(iii)
=

n− t

n
·

∑

τ∈Π((N\{i})\T )

pN\{i} ({T} ∪ τ)

(17)
=

n− t

n
· Ep

(

δ
N\{i}
T

)

IH
=

n− t

n
· Pot

(

δ
N\{i}
T

)

(B.1)
=

n− t

n
·
(n− t− 1)! (t− 1)!

(n− 1)!
(B.1)
= Pot

(

δNT
)

,

where we use the definition (17) of Ep in the first and third equation, condition (iii) in the
second equation, the induction hypothesis in the fourth equation, and the formula for the
potential of TU Dirac games (B.1) in the last equation.

Fix some player i ∈ N . Summing up
∑

T(N :i∈T Pot
(

δNT
)

=
∑

π∈Π(N\T ) pN ({T} ∪ π) for
all T ( N and such i ∈ T gives

∑

T(N :i∈T

Pot
(

δNT
)

=
∑

T(N :i∈T

∑

τ∈Π(N\T )

pN ({T} ∪ τ) =
∑

π∈Π(N)

pN (π)− pN ({N}) .

Note that
∑

T(N :i∈T Pot
(

δNT
)

= Pot
(

uN
{i} − δNN

)

= 1 − 1
n
. On the other hand, we have

∑

π∈Π(N) pN (π)−pN ({N}) = 1−pN ({N}). Hence, pN ({N}) = 1
n
, and therefore Ep

(

δNN
)

=

pN ({N}) = Pot
(

δNN
)

.
Thus, we have Ep

(

δNT
)

= Pot
(

δNT
)

for all T ⊆ N . Note that the last equation is linear
in the game v =

∑

T 6=∅ v (T ) δ
N
T , so that

Ep (v) =
∑

T⊆N :T 6=∅

v (T ) Ep

(

δNT
)

=
∑

T⊆N :T 6=∅

v (T ) Pot
(

δNT
)

= Pot (v)

for all v ∈ V (N).

Appendix B.2. Proof of Corollary 5

(i) This immediately follows from setting π = {N} and π = {N \ {i} , {i}} in (18),
respectively.

(ii) This immediately follows from (i) and pN being a probability distribution on Π (N) .
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Appendix B.3. Generalization of the example with four players in (20) to larger games

There exist random partitions that satisfy GEN but deviate from p⋆ for arbitrary n ≥ 4.

Let U>3 := {4, 5, 6, . . . } and ε : U>3 → R, k 7→ εk be such that εk ∈

[

− 1
k!
,
(k2)
2·k!

]

. Consider

the random partitions pε given by

pεN (π) =



















p⋆N (π) + 2

(n−2

2 )(n2)
εn, n > 3, π = {{i, j} , {k, ℓ}} ∪ [N \ {i, j, k, ℓ}] ,

p⋆N (π)− 2

(n2)
εn, n > 3, π = {{i, j}} ∪ [N \ {i, j}] ,

p⋆N (π) + εn, n > 3, π = [N ] ,
p⋆N (π) , otherwise

(B.2)

for all N ⊆ U, pairwise different i, j, k, ℓ ∈ N, and π ∈ Π (N). Straightforward but tedious
calculations show that these random partitions satisfy GEN. Details can obtained from the
authors upon request.

Appendix B.4. Proof of Theorem 7

Let p be a positive random partition (POS) that satisfies GEN.
Existence: The restriction operator rp given by (21) obviously satisfies PNG. We next

investigate the rp-restriction of TUX Dirac games. For all N ⊆ U, i ∈ N, (T, τ) ∈ E (N) ,
T 6= ∅, α ∈ R, and (S, π) ∈ E (N \ {i}) , we obtain

(αδT,τ)
r

−i
(S, π)

(21)
=

n

n− s

∑

B∈π∪{∅}

pN ({S} ∪ π+i B)

pN\{i} ({S} ∪ π)
αδT,τ (S, π+i B)

(A.1)
=

∑

B∈π∪{∅}

{

α n
n−s

pN ({S}∪π+i B)
pN\{i}({S}∪π)

, if (S, π+i B) = (T, τ) ,

0, if (S, π+i B) 6= (T, τ)

=

{

α n
n−t

pN ({T}∪τ)
pN\{i}({T}∪τ−i)

, if i ∈ N \ T and (S, π) = (T, τ−i) ,

0, otherwise,

where we use the definition of the restriction operator rp (21) in the first equation and the
definition of TUX Dirac games (A.1) in the second equation. Therefore, we have

(αδT,τ )
rp

−i

(A.1)
=

{

α n
n−t

pN ({T}∪τ)
pN\{i}({T}∪τ−i)

δT,τ−i
, if i ∈ N \ T,

0N\{i}, if i ∈ T .
(B.3)

Next, we show that rp is path independent (PI). By the linearity of rp and since the
Dirac games form a basis of the W (N) (see (A.2)), it suffices to show path independence
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for the Dirac games δT,τ . We obtain

((αδT,τ )
rp

−i
)r

p

−j

(B.3)
=

{

α n
n−t

n−1
n−t−1

pN ({T}∪τ)

pN\{i.j}(T∪τ−{i,j})
δT,τ−{i,j}

, if i, j ∈ N \ T,

0N\{i,j}, if i ∈ T or j ∈ T

(B.3)
=
(

(δT,τ )
rp

−j

)rp

−i

for all N ⊆ U, (T, τ) ∈ E (N) , and i, j ∈ N, i 6= j, which establishes PI. We can therefore
remove multiple players in a well-defined manner. In particular, we have

(δT,τ )
rp

−S

(B.3)
=

s−1
∏

k=0

n− k

n− t− k

pN ({T} ∪ τ)

pN\S ({T} ∪ τ−S)
δT,τ−S

(B.4)

for all N ∈ N , (T, τ) ∈ E (N) , and S ∈ N \ T.
Finally, we show Potr

p

= Ep. By PI and Theorem (3) due to Dutta et al. (2010), there
exists a unique rp-potential Potr

p

. Since rp is linear in the game and by definition of vrw (13)
as well as the definition of the r-Potential (15), the rp-potential Potr

p

is linear in the game.
Moreover, the mapping Ep is linear in the game. Since TUX Dirac games constitute a basis,
(A.2), it suffices to show the claim for TUX Dirac games. For N ⊆ U and (T, τ) ∈ E (N) ,
T 6= ∅, it follows with the definition of the auxiliary game vrw (13) that

vr
p

δT,τ

(13),(B.4)
=

n−t−1
∏

k=0

n− k

n− t− k

pN ({T} ∪ τ)

pT ({T})
δNT =

Prop. 4 (i)
=

n!t

(n− t)!t!
pN ({T} ∪ τ) δNT , (B.5)

where we use Corollary 5 (i) , i.e., pT ({T}) = 1/t, in the last equation. Now, we obtain

Potr
p

(δT,τ )
(15)
= Pot

(

vr
p

δT,τ

)

(B.5)
=

n!t

(n− t)!t!
pN ({T} ∪ τ) Pot

(

δNT
)

(B.1)
= pN ({T} ∪ τ)

(17)
= Ep (δT,τ ) ,

where we use the definition of the r-Potential (15) in the first equation, linearity of the
potential for TU games (B.5) in the second equation, the formula for the potential of Dirac
TU games (B.1) in the third equation, and the definition of Ep (17) in the fourth equation.
This concludes the proof of existence.

Uniqueness : Let r be a restriction operator that satisfies PI, PNG, and (†) Potr = Ep.
We show r = rp by induction on n.

Induction basis : For w ∈ W (N) , N ⊆ U, n = 1, we have wr
−i = 0 = wrp

−i for i ∈ N ,
where {0} = W (∅) .

Induction hypothesis (IH): Suppose we have wr
−i = wrp

−i for all w ∈ W (N) , N ⊆ U and
i ∈ N such that n ≤ m.

Induction step: Let N ⊆ U be such that n = m + 1. For all w ∈ W (N) , i ∈ N, and
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(T, τ) ∈ E (N \ {i}) , T 6= ∅, let wi,T,τ ∈ W (N) be given by

wi,T,τ ≡
∑

B∈τ∪{∅}

w (T, τ+i B) δT,τ+i B
. (B.6)

Note that in the game wi,T,τ those embedded coalitions for N that determine wr
−i (T, τ)

according to the definition of a restriction operator (RES) generate the same worth as in
w, whereas all other embedded coalition generate a zero worth. This is what drives the
results in the next two paragraphs—in the restricted game, only a few embedded coalitions
generate a worth that differs from their worth in the restriction of the null game, which by
PNG is the null game.

We have

(wi,T,τ)
r

−i

(B.6),RES

= ξ (wi,T,τ , i) δT,τ +
(

0N
)r

−i

PNG
= ξ (wi,T,τ , i) δT,τ (B.7)

for some ξ (wi,T,τ , i) ∈ R; and further using the definition of TUX Dirac games (A.1), we
have

(wi,T,τ)
r

−i
(T, τ)

(A.1)
= ξ (wi,T,τ , i) . (B.8)

For k ∈ T, we have

(wi,T,τ )
r

−k

(B.6),RES

=
(

0N
)r

−k

PNG
= 0N\{k}. (B.9)

For k ∈ (N \ {i}) \ T, we have

(wi,T,τ)
r

−k

(B.6),RES

=
∑

B∈τ−k∪{∅}

ξ (wi,T,τ , B, k) δ
T,(τ−k)+i B

+
(

0N
)r

−k

PNG
=

∑

B∈τ−k∪{∅}

ξ (wi,T,τ , B, k) δ
T,(τ−k)+i B

(B.10)

for some ξ (wi,T,τ , B, k) ∈ R. Hence, we obtain

(

(wi,T,τ)
r

−i

)r

−k

IH
=
(

(wi,T,τ)
r

−i

)rp

−k

(B.7)
= (ξ (wi,T,τ , i) δT,τ )

rp

−k

(21),(B.3)
= ξ (wi,T,τ , i)

n− 1

n− 1− t

pN\{i} ({T} ∪ τ)

pN\{i,k} ({T} ∪ τ−k)
δT,τ−k

, (B.11)

where we use linearity following from the definition of the rp restriction operator (21) and
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the restriction of TUX Dirac games (B.3) in the third equation. Analogously, we have

(

(wi,T,τ)
r

−k

)r

−i

IH
=
(

(wi,T,τ)
r

−k

)rp

−i

(B.10)
=





∑

B∈τ−k∪{∅}

ξ (wi,T,τ , B, k) δ
T,(τ−k)+i B





rp

−i

(21),(B.3)
=

∑

B∈τ−k∪{∅}

ξ (wi,T,τ , B, k)
n

n− t

p(N\{k})

(

{T} ∪
(

τ
−k

)

+i B

)

pN\{i,k}

(

{T} ∪
(

(

τ
−k

)

+i B

)

−i

)δ
T,

(

(τ−k)+i B

)

−i

=





∑

B∈τ−k∪{∅}

n− 1

n− 1− t

p(N\{k})

(

{T} ∪
(

τ
−k

)

+i B

)

pN\{i,k}

(

{T} ∪ τ
−k

) ξ (wi,T,τ , B, k)



 δT,τ−k
. (B.12)

Since r satisfies PI, the left-hand sides of (B.11) and (B.12) coincide. We obtain

pN\{i} ({T} ∪ τ) ξ (wi,T,τ , i)

(B.11),(B.12)
=





∑

B∈τ−k∪{∅}

p(N\{k})

(

{T} ∪
(

τ
−k

)

+i B

)



 ξ (wi,T,τ , B, k) (B.13)

for all k ∈ (N \ {i}) \ T.
Further, we obtain

0
(B.6)
= wi,T,τ (N, ∅)

(12),(†)
=

∑

ℓ∈N

[

Ep (wi,T,τ)− Ep

(

(wi,T,τ)
r

−ℓ

)]

(B.7),(B.10),(B.9)
= nEp (wi,T,τ)− Ep (ξ (wi,T,τ , i) δT,τ )−

∑

ℓ∈T

Ep

(

0N\{l}
)

−
∑

ℓ∈(N\{i})\T

Ep





∑

B∈τ−ℓ∪{∅}

ξ (wi,T,τ , B, ℓ) δT,(τ−ℓ)
+i B





(17),(A.1)
= nEp (wi,T,τ)− ξ (wi,T,τ , i) pN\{i} (τ ∪ {T})

−
∑

ℓ∈(N\{i})\T

∑

B∈τ−ℓ∪{∅}

ξ (wi,T,τ , B, ℓ) pN\{ℓ}

(

(τ−ℓ)
+i B

∪ {T}
)

(B.13)
= nEp (wi,T,τ)− (n− t) pN\{i} ({T} ∪ τ) ξ (wi,T,τ , i) , (B.14)

where in the second equation we use the formula for the potential (12) and the fact that (†)
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Potr = Ep; in the the fourth equation refer to the definition of Ep (17) and the definition of
TUX dirac games (A.1). Finally, we obtain

wr
−i (T, τ)

R,(B.6)
= (wi,T,τ)

r

−i
(T, τ)

(B.8)
= ξ (wi,T,τ , i)

(B.14)
=

n

n− t

1

pN\{i} ({T} ∪ τ)
Ep (wi,T,τ)

(17),(B.6),(A.1)
= =

n

n− t

∑

B∈τ∪{∅}

w (T, τ+i B)
pN ({T} ∪ τ+i B)

pN\{i} ({T} ∪ τ)

(21)
= wrp

−i (T, τ) ,

where in the fourth equation we refer to the definition of Ep (17) and the definition of TUX
Dirac games (A.1); and in the fifth equation we refer to the definition of the rp-restriction
operator (21). This concludes the proof.

Appendix B.5. Proof of Corollary 8

(i) Note that all mappings involved are linear. Since the Dirac games form a basis of
the W (N) (see (A.2)), it suffices to establish the formula for Dirac games. For all N ⊆ U,
i ∈ N, and (T, τ) ∈ E (N) , T 6= ∅, we obtain

Shrp

i (δT,τ )
(14)
= Shi

(

vr
p

δT,τ

)

(B.5),(1)
=

{

pN ({T} ∪ τ) , i ∈ T,
− t

n−t
pN ({T} ∪ τ) , i ∈ N \ T

, (B.15)

where in the first equation is due to the definition of the r-Shapley value (14) and the second
equation is due to vr

p

δT,τ
= n!t

(n−t)!t!
pN ({T} ∪ τ) δNT and the Shapley value for TU Dirac games.

This verifies the formula for Dirac games.
(ii) Since both solutions are linear, it suffices to show the claim for Dirac TU games. For

all N ⊆ U, T ⊆ N, T 6= ∅, and i ∈ T , we obtain

Shrp

i

(

δNT
)

= Shrp

i





∑

τ∈Π(N\T )

δNT,τ





(B.15)
=

∑

τ∈Π(N\T )

pN ({T} ∪ τ)

Prop 4 (ii)
=

(n− t)! (t− 1)!

n!

(1)
= Shi

(

δNT
)

,

where the second equation follows from Proposition 4 (ii) and the last equation follows from
the definition of the Shapley value (1). Analogously for i ∈ N \ T.
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Appendix B.6. Proof of Lemma 9

By (5), we have

1

n− s
=

n

n− s

p⋆N ({S} ∪ π+i ∅)

p⋆
N\{i} ({S} ∪ π)

and
b

n− s
=

n

n− s

p⋆N ({S} ∪ π+i B)

p⋆
N\{i} ({S} ∪ π)

for B ∈ π

for all N ⊆ U, i ∈ N, and (S, π) ∈ E (N \ {i}) . The random partition p⋆ is positive (POS)
and generates the potential for TU games (GEN). Hence, Theorem 7 applies. The first
claim now drops from (23) and (21).

Since both MPW and Shr⋆ are linear, it suffices to show the second claim for Dirac
games. For all N ⊆ U, T ⊆ N, and i ∈ N, we have

MPWi (δT,τ )
(10)
= Shi

(

v̄⋆δT,τ

)

(11)
= Shi

(

p⋆N\T (τ) δNT
)

(1)
=











p⋆
N\T

(τ)

n(n−1

t−1)
, i ∈ T,

− t
n−t

p⋆
N\T

(τ)

n(n−1

t−1)
, i ∈ N \ T

(5)
=

{

p⋆N ({T} ∪ τ) , i ∈ T,
− t

n−t
p⋆N ({T} ∪ τ) , i ∈ N \ T,

where the first equation is due to the definition of MPW (10), the second equation is due to
the definition of the average game v̄⋆ (11), the third equation is due to the definition of the
Shapley value (1), and the fourth equation is due to the definition of p⋆ (5). The claim now
follows from (B.15).

Appendix B.7. Proof of Theorem 10

By definition of the random partition p⋆ (5), p⋆ is positive (POS). For all N ⊆ U,
w ∈ W (N) , i ∈ N, and (T, τ) ∈ E (N \ {i}) , T 6= ∅, we have

p⋆N ({T ∪ {i}} ∪ τ)
(5)
=

t

n− t

∑

B∈τ∪{∅}

p⋆N ({T} ∪ τ+i B) . (B.16)

Hence, we obtain

Shrp
⋆

i (w) =
∑

(T,τ)∈E(N\{i})





t

n− t

∑

B∈τ∪{∅}

p⋆N ({T} ∪ τ+i B) [w (T ∪ {i} , τ)− w (T, τ+i B)]





for all N ⊆ U, w ∈ W (N) , and i ∈ N. This already entails that Shrp
⋆

satisfies NP.
Let now p be a positive random partition (POS). If n ≤ 1, then trivially pN = p⋆N . Let

now N ⊆ U be such that n > 1. For α ∈ R, i ∈ N , π ∈ Π (N \ {i}) , and B ∈ Π, let
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wα
i,π,B ∈ W (N) be given by

wα
i,π,B ≡ αδB∪{i},π\{B} +

∑

C∈(π\{B})∪{∅}

αδB,(π\{B})+i C
.

By construction, player i is a null player in wα
i,π,B for any α ∈ R. By NP, we therefore have

Shrp

i

(

w1
i,π,B

)

= 0.By (22), we have

Shrp

i

(

wα
i,π,B

)

= α



pN (π+i B)−
b

n− b

∑

C∈(π\{π(i)})∪{∅}

pN (π+i C)



 .

Hence, NP implies

pN (π+i B)−
b

n− b

∑

C∈(π\{B})∪{∅}

pN (π+i C) = 0. (B.17)

By (B.16), the random partition p⋆ satisfies (B.17).
Let β ∈ R be defined by pN ([N ]) = βp⋆N ([N ]) = β

n!
. We show pN (π) = β · p⋆N (π) for

all π ∈ Π (N) by induction on |π| . Since both pN and p⋆N are probability distributions on
Π (N) , this implies pN = p⋆N .

Induction basis : By construction, the claim holds for |π| = n, that is, π = [N ] .
Induction hypothesis (IH): Let the claim hold for all π ∈ Π (N) with |π| ≥ t > 1.
Induction step: Fix i ∈ N. Let now π ∈ Π (N \ {i}) be such that |π| = t− 1. By (B.17),

we have

pN (π+i B)−
b

n− b

∑

C∈π\{B}

pN (π+i C) =
b

n− b
pN (π+i ∅)

IH
=

b · β

n− b
p⋆N (π+i ∅) (B.18)

for all B ∈ π. That is, we have a system of |π| linear equations indexed by B ∈ π with
|π| unknowns, pN (π+i C) , indexed by C ∈ π. This system be written as Ax = y. The
column vector x ≡ (pN (π+i C))C∈π represents the |π| unknowns. The column vector y ≡
(

b·β
n−b

p⋆N (π+i ∅)
)

B∈π
represents the right-hand side of (B.18). The |π| × |π| matrix A ≡

(aB,C)B,C∈π given by

aB,C ≡

{

1, C = B,
− b

n−b
, C 6= B

represents the coefficients of (B.18), where the left index indicates the equation and the right
index indicates the unknown. Note that we cover all π ∈ Π (N) with |π| = t− 1.

By (B.16), the column vector x⋆ ≡ (β · p⋆N (π+i C))C∈π is a solution of (B.18). Remains
to show that x⋆ is the unique solution. This is the case if and only if A is non-singular.
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Consider the |π| × |π| matrix D = (dB,C)B,C∈π given by

dB,C ≡

{

p⋆N (π+i B) , C = B,
0, C 6= B.

This matrix is non-singular. Hence, the matrix A is non-singular if and only if the product
AD = (eB,C)B,C∈π given by

eB,C ≡

{

p⋆N (π+i B) , C = B,
− b

n−b
p⋆N (π+i C) , C 6= B

(B.19)

is non-singular. For any B ∈ π, we have

|eB,B|−
∑

C∈π\{B}

|eB,C |
(B.19)
= p⋆N (π+i B)−

b

n− b

∑

C∈π\{B}

p⋆N (π+i C)
(B.17)
=

b

n− b
p⋆N (π+i ∅)

(5)
> 0,

where the last inequality is follows from the definition of p⋆. Hence, the matrix AD has
a strictly dominant diagonal. It is well-known that real square matrices with a strictly
dominant diagonal are non-singular (see for example Taussky, 1949, Theorem 1), which
concludes the proof.

Appendix B.8. Proof of Proposition 13

We prepare the proof by a lemma.

Lemma 15. For all w ∈ W (N) , N ⊆ U and i ∈ N , we have v̄⋆
wr⋆

−i

= (v̄⋆w)−i.

Proof. The claim follows from the linearity of the involved operators, from

v̄⋆
(δT,τ)

r⋆

−i

(B.3)
= v̄⋆δT,τ−i

(11)
= δ

N\{i}
T

(11)
=
(

v̄⋆δT,τ

)

−i

for all N ⊆ U, T ⊆ N, T 6= ∅, (T, τ) ∈ E (N) , and i ∈ N \ T, and

v̄⋆
(δT,τ)

r⋆

−i

(B.3)
= v̄⋆

0N\{i}

(11)
= 0N\{i} (11)

=
(

v̄⋆δT,τ

)

−i

for i ∈ T , where we first use the restriction formula for TUX Dirac games (B.3) and then
definition of the average game(11). �

We can now proof the proposition.
Proof of Proposition 13. For all w ∈ W (N) , N ⊆ U and i, j ∈ N, i 6= j such that i is a
strong null player in w, we have

MPWi

(

wr⋆

−j

) (10)
= Shi

(

v̄⋆
wr⋆

−j

)

Lemma 15
= Shi

(

(v̄⋆w)−j

)

= 0,
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where the first equation just follows from the definition of MPW and the third equation
follows from the facts that the strong null player i becomes a null player in the average
game v̄⋆w (Macho-Stadler et al., 2007, p. 346), that null players remain null players in a
subgame of a TU game, and that null players obtain a zero Shapley payoff. �

Appendix B.9. Proof of Proposition 14

Existence: By Theorem 2, the random partition p⋆ satisfies GEN. The Ewens distribu-
tions defined in Footnote 3, in particular p⋆, are known to satisfy CI.

Uniqueness : Let the random partition p for U satisfy CI and GEN. We show pN = p⋆N
for all N ⊆ U by induction on n.

Induction basis : For n = 1, the claim is immediate.
Induction hypothesis (IH): Suppose pN = p⋆N for all N ⊆ U such that n ≤ n̄.
Induction step: Let N ⊆ U be such that n = n̄+ 1. We have

pN ({N})
GEN
= Pot

(

uN
N

) (4)
= p⋆N ({N}) ,

where the second equation is due to the fact that p⋆ generates the potential (4). Consider
now π ∈ Π (N) , π 6= {N} and B ∈ π. We obtain

pN (π)
CI
= pN\B (π \ {B})

∑

τ∈Π(N):B∈τ

pN (τ)

GEN
= pN\B (π \ {B}) Pot

(

δNB
)

IH
= p⋆N\B (π \ {B}) Pot

(

δNB
)

(4)
= p⋆N\B (π \ {B})

∑

τ∈Π(N):B∈τ

p⋆N (τ)

CI
= p⋆N (π) ,

which concludes the proof.
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de Saint-Flour, XIII—1983. Vol. 1117 of Lecture Notes in Mathematics. Springer, Berlin, Ch. 1, pp.
1–198.

Bolger, E. M., 1989. A set of axioms for a value for partition function games. International Journal of Game
Theory 18, 37–44.
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