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There is an error in one of the results of our paper (Huettner et al. 2019, Oper. Res., 67(3), 671-699). In

this erratum, we point the error out and provide a correction based on Walker-Jones (2023, J. Econ. Theory

212, 105688). Our key characterizations, insights and numerical examples do not depend on this error and

hence remain valid. The main implication is on the stopping condition used in the algorithm. We propose a

fix based on the new sufficient condition and if needed standard convex optimization techniques.
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1. Background

It has been brought to our attention by David Walker-Jones, of University of Surrey, that there is
an error in Theorem 2 of our paper Huettner et al. (2019).

Recall the following model preliminaries and notation. The consumer is learning about the state
of the world ω ∈Ω=Ω1× . . .×Ωk× . . .×Ωn, where each component ωk can be learned at a different
learning cost, λk, where λ1 6 . . .6 λk 6 . . .6 λn. If the consumer chooses alternative i∈A in state ω,
then this gives the utility u(i,ω).

In Huettner et al. (2019) we start with a model that allows the consumer to generate any infor-
mation strategy that is consistent with the prior belief g ∈∆(Ω). To this end, the cost of learning is
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reflected by the expected reduction in Shannon entropy, thereby differentiating the different learning
cost for different states. We first show that this model can be simplified to a model that is stated in
choice probabilities. Specifically, we arrive at the following optimization problem:

max
(p(i|ω))i∈A,ω∈Ω

∑
i∈A

∑
ω∈Ω

u(i,ω)p(i |ω)g(ω)−
n∑

k=1

λkIp(Ωk,A |Ω1··k−1)

subject to p(i |ω)≥ 0 for all i∈A,ω ∈Ω,∑
i∈A

p(i |ω) = 1 for all ω ∈Ω,

where p(i |ω) denotes the conditional probability of chosing alternative i given that the state is ω,
and Ip(Ωk,A |Ω1··k−1) is the conditional mutual information between Ωk and choice of A, given the
states Ω1··k−1 that are easier to learn.

Theorem 1 in Huettner et al. (2019) identifies the following necessary conditions for optimality,
obtained from the first order conditions:

p(i |ω) =
e

u(i,ω)
λn p(i)

λ1
λn
∏n−1

k=1 p(i |ω1··k)
λk+1−λk

λn∑
j∈A e

u(j,ω)
λn p(i)

λ1
λn
∏n−1

k=1 p(j |ω1··k)
λk+1−λk

λn

for all i∈A,ω ∈Ω. (1)

Note that those equations are void if p(i | ω) = 0. In contrast, if p(i | ω) > 0 for all ω ∈Ω and all
i∈A, then (1) is also sufficient for the optimality of a solution.

Insertion of (1) into the consumer’s optimization yields a simplifcation of the problem. To this
end, denote a collection of partial conditional choice probabilities by

p := (p(i |ω1··n−1))i∈A,ω1··n−1∈Ω1··n−1
.

Lemma 2 in Huettner et al. (2019) derives this equivalent, alternative formulation of the problem:

max
p

λn

∑
ω

g(ω) log
∑
i∈A

e
u(i,ω)
λn p(i)

λ1
λn

n−1∏
k=1

p(i |ω1··k)
λk+1−λk

λn (2)

subject to p(i |ω1··n−1)≥ 0 for all i∈A, and allω1··n−1 ∈Ω1··n−1, (3)∑
i∈A

p(i |ω) = 1 for all ω1··n−1 ∈Ω1··n−1. (4)

2. The Error and Correction
In Huettner et al. (2019), we further attempt to solve the alternative problem (2)-(4) and claim in
Theorem 2 that the following constitutes a sufficient condition for a collection of partial conditional
choice probabilities p to be optimal:∑

ω1··n−1

g(ω1··n−1)
∑
ωn

g(ωn |ω1··n−1)e
u(i,ω)
λn∑

j∈A e
u(j,ω)
λn p(j)

λ1
λn
∏n−1

k=1 p(j |ω1··k)
λk+1−λk

λn

≤ 1 for all i∈A. (5)
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As it turns out, these conditions are necessary, but not sufficient for a collection of partial conditional

choice probabilities p to be an optimal solution. We establish this through an example constructed

from a scenario that was kindly shared with us by David Walker-Jones. In this example, a set of

choice probabilities actually satisfy (5), but they do not constitute an optimum.

Example. Consider the scenario with three options A= {1,2,3} and the state space Ω=Ω1 ×Ω2

with Ω1 = {9.9,0} indicating the value of alternative 1 and Ω2 = {10,0} the value of alternative

2. Let alternative 3 be the mirror image of alternative 2, so its value is implied by alternative 2.

Accordingly, there are 4 states and suppose that they are a-priori equally likely.

State (9.9,0) (9.9,10) (0,0) (0,10)
Priorbelief 1/4 1/4 1/4 1/4

UtilityAlternative1 9.9 9.9 0 0
UtilityAlternative2 0 10 0 10
UtilityAlternative3 10 0 10 0

Moreover, let the cost of information be

λ1 := 1< 5 =: λ2.

Clearly, the consumer will learn the realization of Ω1 with high precision, and if alternative 1 has

value 9.9, it will be chosen with high probability. Indeed, the optimal solution is as follows:1

Alternative 1 2 3
Optimalpartial conditional choiceprobability

given that thevalueof alternative1 is . . .
9.9 93.04% 3.48% 3.48%
0 0.067% 49.97% 49.97%

Optimalunconditional choiceprobability 46.6% 26.7% 26.7%

However, the choice probabilities given by p(1) = 0, i.e., never select alternative 1, and choice

probabilities for alternatives 2 and 3 given as

p(2 | ω1) = p(3 | ω1) =
1

2
for ω1 ∈ {9.9,0}, (6)

implying p(2) = p(3) = 1
2
, satisfy the conditions in (5). Specifically, for i= 1,2,3, we have:

1

4

e9.9

0.5e0 +0.5e10
+

1

4

e9.9

0.5e10 +0.5e0
+

1

4

e0

0.5e0 +0.5e10
+

1

4

e0

0.5e0 +0.5e10
< 1,

1

4

e0

0.5e0 +0.5e10
+

1

4

e10

0.5e10 +0.5e0
+

1

4

e0

0.5e0 +0.5e10
+

1

4

e10

0.5e10 +0.5e0
= 1,

1

4

e10

0.5e0 +0.5e10
+

1

4

e0

0.5e10 +0.5e0
+

1

4

e10

0.5e0 +0.5e10
+

1

4

e0

0.5e10 +0.5e0
= 1.

This establishes the fact that p may satisfy (5) without optimizing the problem (2)-(4).

1 The conditional choice probabilities p(i | ω1ω2) can be computed via the necessary conditions in (1).
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2.1. Correction

In order to remedy the error, we refer to the sufficient conditions in Walker-Jones (2023), who studies a

very similar problem. To this end, we introduce the following notation. For every alternative i, state ω,

and a collection of partial conditional choice probabilities p= (p(i |ω1··n−1))i∈A,ω1··n−1∈Ω1··n−1
, define

γ
(0)
i (p,ω) =

e
u(i,ω)

λ∑
j∈A e

u(j,ω)
λ p(j)

λ1
λn
∏n−1

k=1 p(j |ω1··k)
λk+1−λk

λn

γ
(1)
i (p,ω1··n−1) =

( ∑
ωn∈Ωn

g(ωn |ω1··n−1)γ
(0)
i (p,ω1··n−1ωn)

) λn
λn−1

γ
(2)
i (p,ω1··n−2) =

 ∑
ωn−1∈Ωn−1

g(ωn−1 |ω1··n−2)γ
(1)
i (p,ω1··n−2ωn−1)


λn−1
λn−2

...

γ
(n−1)
i (p, ω1) =

( ∑
ω2∈Ω2

g(ω2 | ω1)γ
(n−2)
i (p, ω1ω2)

)λ2
λ1

γ
(n)
i (p) =

∑
ω1∈Ω1

g(ω1)γ
(n−1)
i (p, ω1)

Here, γ(0)
i (p,ω) is the relative “score” of alternative i in state ω if choice probabilities are given

by p. These are then aggregated in a step-wise manner (in conjunction with an exponentiation

involving the corresponding information costs) to obtain the expected score γ
(n)
i (p) of each alterna-

tive i ∈A. The correct sufficient conditions follow from Theorem 3 of Walker-Jones (2023) and are

presented in the next proposition.

Proposition 1 A collection of partial conditional choice probabilities p∗ solves the alternative prob-

lem (2)-(4), whenever

γ
(n)
i (p∗)6 1 forall i∈A. (7)

The sufficient condition tests whether some alternative has an expected score γ(n)
i higher than 1; i.e.,

whether some unchosen alternative outperforms the chosen alternatives (it follows from the necessary

conditions that γ(n)
i (p∗) = 1 for all chosen alternatives). The sufficient conditions we presented in (5)

performed the same test, but relied on a simpler (hence incorrect) aggregation of the scores.

Returning to our example, where n= 2, condition (7) becomes

∑
ω1∈{9.9,0}

1

2

 ∑
ω2∈{10,0}

1

2

e
u(i,ω1ω2)

λ∑
j∈{1,2,3} e

u(j,ω1ω2)
λ p(j)

λ1
λ2 p(j | ω1)

λ2−λ1
λ2


λ2
λ1
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for all i ∈ {1,2,3}. Indeed, the optimal solution gives γi
(2)
(p∗) = 1 for each i ∈ {1,2,3}, whereas for

the incorrect set of probabilities examined earlier, we get γ1
(2)

(p) = 7.68, which violates (7).

3. Impact on Further Results

We remark that our key derivations and characterizations, in particular Theorem 1 (necessary con-

ditions), Corollary 1 (invariant ratio of posterior beliefs), and Lemma 1 (alternative formulation)

remain unaffected. We also used these correct results for the computation of our numeric examples

and applications.

Regarding the algorithm, Proposition 2 (the improvement in each step) does not rely on this

sufficient condition, and hence remains valid. The main implication is on Step 3 of the general

algorithm in §6.2, where we apply the test for optimality when probabilities converge using our

(incorrect) sufficient condition, and perturb the solution in a way that exploits the violation of the

sufficient condition if the optimality test fails, gain improvement and continue. In other words, even

though our algorithm will improve the objective function in each step (as stated in Proposition 2)

if pt+1 6= pt, we cannot guarantee optimality when pt+1 ≈ pt, and hence Theorem 3 (algorithm

optimality) would not hold. Naturally, we can apply the correct sufficient conditions presented (7)

in Proposition 1 to conduct the test for optimality when pt+1 ≈ pt. If the solution satisfies (7), the

optimality would be guaranteed. If not, we would need to resort to standard convex optimization

techniques (see e.g., Boyd Vandenberghe 2004) to continue the search.
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